Requirement for XRCC4 and DNA ligase IV in alignment-based gap filling for nonhomologous DNA end joining in vitro.
نویسندگان
چکیده
In the nonhomologous end joining pathway of DNA double-strand break repair, the ligation step is catalyzed by a complex of XRCC4 and DNA ligase IV. Extracts of CHO-K1 cells are able to accurately rejoin a site-specific free radical-mediated double-strand break with partially complementary overhangs, by a mechanism involving alignment-based gap filling followed by ligation. Extracts of XR-1 cells, which lack XRCC4 and DNA ligase IV, carried out neither gap filling nor ligation. Supplementation of the extracts with recombinant XRCC4/ligase IV, but not with XRCC4 alone, restored gap filling and accurate end joining. The results imply that XRCC4 and ligase IV are essential for alignment-based gap filling, as well as for final ligation of the breaks.
منابع مشابه
PARP-3 and APLF function together to accelerate nonhomologous end-joining.
PARP-3 is a member of the ADP-ribosyl transferase superfamily of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA DSB repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the retention of XRCC4/...
متن کاملXLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining
DNA nonhomologous end-joining (NHEJ) is a predominant pathway of DNA double-strand break repair in mammalian cells, and defects in it cause radiosensitivity at the cellular and whole-organism levels. Central to NHEJ is the protein complex containing DNA Ligase IV and XRCC4. By searching for additional XRCC4-interacting factors, we identified a previously uncharacterized 33 kDa protein, XRCC4-li...
متن کاملXRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps.
XRCC4 and DNA ligase IV form a complex that is essential for the repair of all double-strand DNA breaks by the nonhomologous DNA end joining pathway in eukaryotes. We find here that human XRCC4:DNA ligase IV can ligate two double-strand DNA ends that have fully incompatible short 3' overhang configurations with no potential for base pairing. Moreover, at DNA ends that share 1-4 annealed base pa...
متن کاملXrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV.
Nonhomologous end joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammalian cells. A critical step in this process is DNA ligation, involving the Xrcc4-DNA ligase IV complex. DNA end processing is often a prerequisite for ligation, but the coordination of these events is poorly understood. We show that polynucleotide kinase (PNK), with its ability to process ionizing...
متن کاملPathways of Nonhomologous End Joining DNA Ligase III as a Candidate Component of Backup
Biochemical and genetic studies support the view that the majority of DNA double-strand breaks induced in the genome of higher eukaryotes by ionizing radiation are removed by two pathways of nonhomologous end joining (NHEJ) termed DNHEJ and B-NHEJ. Whereas D-NHEJ depends on the activities of the DNA-dependent protein kinase and DNA ligase IV/ XRCC4, components of B-NHEJ have not been identified...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 63 1 شماره
صفحات -
تاریخ انتشار 2003